

Biology Standard level Paper 2

	Car	ıdıda	te se	ssior	า num	nber	
	l		l				

1 hour 15 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer one question.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [50 marks].

405704

Section A

Answer all questions. Write your answers in the boxes provided.

1. Diabetes is often associated with the failure of the β (beta) cells in the pancreas, but it is unclear what actually causes this failure. FoxO1 is a protein which acts as a transcription factor to regulate the expression of genes involved in cell growth. FoxO1 also regulates increase in number and differentiation in cells such as pancreatic β cells.

A study was conducted using mice lacking the gene for FoxO1 in β cells (IKO) as well as normal (control) mice. Blood glucose levels after fasting were compared for four groups of mice: young (3 months old) male mice, young (3 months old) female mice, older females (who have had several pregnancies) and aging males (16–20 months).

[Source: Chutima Talchai, Shouhong Xuan, Hua V. Lin, Lori Sussel, Domenico Accili, "Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure", *Cell*, Volume 150, Issue 6, 14 September 2012, Pages 1223–1234.]

Compare blood glucose levels after fasting in young control mice and young IKO mice

٧	VII	ιn	Ю	u	τ	٢	O	Х	C)	١.																															
																																										_
																																									_	_

(This question continues on the following page)

(a)

(Question 1 continued)

(b)	(i)	Estimate the difference between mean blood glucose levels in control and IKO older female mice.	[1]
		mg ml ⁻¹	
	(ii)	Aging and having pregnancies are considered to be physiological stresses. Deduce the effect of stress on blood glucose levels.	[2]
(c)		ine the relationship between blood glucose levels after fasting and lack of FoxO1 e mice studied.	[2]

(This question continues on the following page)

Turn over

(Question 1 continued)

The levels of pancreatic hormones and β cell mass in older female control mice and older female IKO mice lacking FoxO1 were then investigated.

[Source: Chutima Talchai, Shouhong Xuan, Hua V. Lin, Lori Sussel, Domenico Accili, "Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure", *Cell*, Volume 150, Issue 6, 14 September 2012, Pages 1223–1234]

(d)	Calculate the percentage difference in β cell mass of the IKO mice compared to the control mice.	[2]
	%	
(e)	State the correlation between lack of FoxO1 and pancreatic hormones in mice.	[1]

(This question continues on the following page)

(Question 1 continued)

(f)	Referring to the functions of insulin and glucagon, suggest how the differences in hormone levels help to explain the blood glucose levels.	[3]

(a)	State what type of sugar lactose is.	[
(b)	State a function of lactose.	[
(c)	Explain the production of lactose-free milk.	[

3. The diagram below shows a motor neuron.

[Source: © International Baccalaureate Organization 2015]

(a)	Label the structures indicated by the numbers I–IV.	[2]
(b)	State a function of motor neurons.	[1]
(c)	Define resting potential.	[1]

(This question continues on the following page)

Turn over

(Question 3 continued)

	,	ıu	"	IC	; 1	IC	۷V	/	110	51	V	C	11	11	Ρı	uı	3	С,	>	a	uv	C	u	а	11	ان ا		111	ıc	·u	0	IIC	וונ	y	а	-	ıc	ıv	C	"	U	C	•											
																																																		_				
•	٠	•	٠	•		•	•	٠	•		٠.	•	•	•	٠	•	٠	•	•		•	•				•	٠	•	•			•	•		•	٠	•		•	٠			٠	•	 ٠	•	•		 •	•	٠	•		
	•						•		•							٠	٠										٠	•				•				٠			٠				٠		 ٠	•			٠		٠	٠		
							-																									-			-																			

[1]

4. (a) Distinguish between absorption of red, green and blue light by chlorophyll. [2]

(b) (i) Draw a graph to show the effect of increasing light intensity on the rate of photosynthesis.

Rate of photosynthesis

Light intensity

(ii) Explain **one** way of directly measuring the rate of photosynthesis. [2]

Section B

Answer **one** question. Up to two additional marks are available for the construction of your answer. Write your answers in the boxes provided.

5. Draw a labelled diagram of a prokaryotic cell. [5] (b) Bacteria are prokaryotes that sometimes act as pathogens. Describe how the body can defend itself against pathogens. [7] (c) Explain the evolution of antibiotic resistance in bacteria. [6] Draw a labelled diagram of the human adult male reproductive system. 6. (a) [5] Describe the application of DNA profiling to determine paternity. (b) [5] Explain the inheritance of colour blindness. [8] (c) 7. Draw a labelled diagram showing the structure of three water molecules and how they interact. [4] (b) Aquatic and other environments are being affected by a global rise in temperature. Outline the consequences of this on arctic ecosystems. [6] Cell membranes separate aqueous environments in cells. Explain how the properties (c) of phospholipids help to maintain the structure of cell membranes. [8]

